Mastering Titration Calculations: A Chemical Analysis Guide

Expert reviewed 22 November 2024 5 minute read


Understanding the Rough Titration

A rough titration serves as the initial trial in a titration experiment. Its primary purpose is to estimate the approximate volume needed to reach the endpoint, indicated by the indicator's color change. This preliminary trial helps analysts perform more precise measurements in subsequent trials. Important note: The rough titration result should never be included in final calculations.

Essential Calculations: Step-by-Step Examples

Example 1: Nitric Acid Concentration Analysis

Given conditions:

  • Standard solution: 25.0 mL of 0.050 mol/L sodium carbonate
  • Average titre (excluding rough titration): 22.38 mL

The calculation process follows these steps:

  • Balanced equation: 2HNO3(aq)+Na2CO3(aq)2NaNO3(aq)+H2O(l)+CO2(g)2HNO_3(aq) + Na_2CO_3(aq) \rightarrow 2NaNO_3(aq) + H_2O(l) + CO_2(g)

  • Calculate moles of standard solution: n(Na2CO3)=0.050×0.025=0.00125 moln(Na_2CO_3) = 0.050 \times 0.025 = 0.00125 \text{ mol}

  • Apply stoichiometric ratio (2:1): n(HNO3)=0.00125×2=0.00250 moln(HNO_3) = 0.00125 \times 2 = 0.00250 \text{ mol}

  • Calculate final concentration: c(HNO3)=0.002500.02238=0.11 mol L1c(HNO_3) = \frac{0.00250}{0.02238} = 0.11 \text{ mol L}^{-1}

Example 2: Hydrofluoric Acid Analysis

Using 30.0 mL of hydrofluoric acid against 0.0350 mol/L sodium carbonate:

  • Average titre calculation (excluding rough): Average titre=26.75+26.70+26.803=26.75 mL\text{Average titre} = \frac{26.75 + 26.70 + 26.80}{3} = 26.75 \text{ mL}

  • Balanced equation: 2HF(aq)+Na2CO3(aq)2NaF(aq)+H2O(l)+CO2(g)2HF(aq) + Na_2CO_3(aq) \rightarrow 2NaF(aq) + H_2O(l) + CO_2(g)

  • Standard solution moles: n(Na2CO3)=0.0350×0.02675=9.36×104 moln(Na_2CO_3) = 0.0350 \times 0.02675 = 9.36 \times 10^{-4} \text{ mol}

  • Apply stoichiometry (2:1): n(HF)=9.36×104×2=1.87×103 moln(HF) = 9.36 \times 10^{-4} \times 2 = 1.87 \times 10^{-3} \text{ mol}

  • Final concentration: c(HF)=1.87×1030.030=0.0624 mol L1c(HF) = \frac{1.87 \times 10^{-3}}{0.030} = 0.0624 \text{ mol L}^{-1}

Example 3: Dilution Analysis with Sulfuric Acid

Given conditions:

  • Original solution: 1.0 L sulfuric acid
  • Dilution: 10.0 mL to 100.0 mL
  • Titration volume: 25.0 mL aliquots
  • Standard solution: 0.100 mol/L NaHCO₃
  • Average titre: 33.40 mL
  • Balanced equation: H2SO4(aq)+2NaHCO3(aq)Na2SO4(aq)+2H2O(l)+2CO2(g)H_2SO_4(aq) + 2NaHCO_3(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l) + 2CO_2(g)

  • Standard solution moles: n(NaHCO3)=0.100×0.03340=0.003340 moln(NaHCO_3) = 0.100 \times 0.03340 = 0.003340 \text{ mol}

  • Apply stoichiometry: n(H2SO4)=0.0033402=0.00167 moln(H_2SO_4) = \frac{0.003340}{2} = 0.00167 \text{ mol}

  • Calculate diluted concentration: c(H2SO4)diluted=0.001670.025=0.0668 mol L1c(H_2SO_4)_{\text{diluted}} = \frac{0.00167}{0.025} = 0.0668 \text{ mol L}^{-1}

  • Account for dilution factor (×10): c(H2SO4)original=0.0668×10=0.668 mol L1c(H_2SO_4)_{\text{original}} = 0.0668 \times 10 = 0.668 \text{ mol L}^{-1}

Example 4: Analysis of Citric Acid in Lemon Juice

Given conditions:

  • Sample: 25.0 mL lemon juice
  • Standard: 0.567 mol/L NaOH
  • Mean titre: 28.50 mL
  • Citric acid molar mass: 192.12 g/mol
  • Account for triprotic nature (1:3 ratio)

  • Calculate standard solution moles: n(NaOH)=0.567×0.02850=0.0162 moln(NaOH) = 0.567 \times 0.02850 = 0.0162 \text{ mol}

  • Apply stoichiometry: n(CA)=0.01623=0.00539 moln(\text{CA}) = \frac{0.0162}{3} = 0.00539 \text{ mol}

  • Calculate mass: m(CA)=0.00539×192.12=1.03 gm(\text{CA}) = 0.00539 \times 192.12 = 1.03 \text{ g}

  • Final concentration: c(CA)=1.030.025=41.4 g L1c(\text{CA}) = \frac{1.03}{0.025} = 41.4 \text{ g L}^{-1}

Return to Module 6: Acid-Base Reactions