Understanding Back Titration: A Comprehensive Guide

Expert reviewed 22 November 2024 5 minute read


Back titration is an essential analytical technique used when direct titration methods are impractical or impossible. This method involves adding an excess of a standard solution to a sample and then titrating the unreacted portion with a second standard solution.

Fundamental Principles

Back titration follows a two-step process:

  • A known excess of standard solution reacts with the analyte
  • The unreacted excess (titrand) is determined by titration with a second standard solution

Applications and Advantages

Back titration is particularly useful in several scenarios:

  • Analysis of insoluble substances (e.g., metal carbonates)
  • Determination of volatile compounds (e.g., ammonia)
  • Measurement of slow reactions where the equivalence point precedes the endpoint
  • Analysis of weak acid-weak base reactions with unclear endpoints

Mathematical Framework

The calculations in back titration follow these key relationships:

ninitial=nreacted+nexcessn_{initial} = n_{reacted} + n_{excess}

where:

  • ninitialn_{initial} = initial moles of standard solution
  • nreactedn_{reacted} = moles that reacted with analyte
  • nexcessn_{excess} = moles remaining (determined by second titration)

Practical Examples

Example 1: Analysis of Impure Magnesium

Given:

  • Sample mass = 1.32 g impure Mg
  • Initial HCl: 100.0 mL of 0.750 mol/L
  • NaOH for back titration: 45.0 mL of 0.250 mol/L

The reaction proceeds as: Mg(s)+2HCl(aq)MgCl2(aq)+H2(g)\text{Mg(s)} + 2\text{HCl(aq)} \rightarrow \text{MgCl}_2\text{(aq)} + \text{H}_2\text{(g)}

Solution steps:

  • Calculate initial moles HCl: nHCl=0.750 mol/L×0.100 L=0.0750 moln_{\text{HCl}} = 0.750 \text{ mol/L} \times 0.100 \text{ L} = 0.0750 \text{ mol}

  • Calculate moles NaOH used: nNaOH=0.250 mol/L×0.0450 L=0.01125 moln_{\text{NaOH}} = 0.250 \text{ mol/L} \times 0.0450 \text{ L} = 0.01125 \text{ mol}

  • Calculate excess HCl: nHCl excess=nNaOH=0.01125 moln_{\text{HCl excess}} = n_{\text{NaOH}} = 0.01125 \text{ mol}

  • Calculate HCl reacted: nHCl reacted=0.07500.01125=0.06375 moln_{\text{HCl reacted}} = 0.0750 - 0.01125 = 0.06375 \text{ mol}

  • Calculate moles Mg: nMg=nHCl reacted2=0.031875 moln_{\text{Mg}} = \frac{n_{\text{HCl reacted}}}{2} = 0.031875 \text{ mol}

  • Calculate mass pure Mg: mMg=0.031875 mol×24.305 g/mol=0.775 gm_{\text{Mg}} = 0.031875 \text{ mol} \times 24.305 \text{ g/mol} = 0.775 \text{ g}

  • Calculate percentage: Percentage Mg=0.775 g1.32 g×100%=58.7%\text{Percentage Mg} = \frac{0.775 \text{ g}}{1.32 \text{ g}} \times 100\% = 58.7\%

Example 2: Analysis of Ammonium Chloride

Given:

  • Initial NaOH: 150.0 mL of 1.00 mol/L
  • H₂SO₄ for back titration: 50.00 mL of 0.150 mol/L

[Insert reaction equation diagram here]

The complete solution follows similar mathematical principles as Example 1.

Practical Considerations

When performing back titration:

  • Ensure complete reaction in the first step
  • Use appropriate indicators
  • Account for all stoichiometric relationships
  • Maintain precise measurements
  • Consider potential sources of error

Return to Module 6: Acid-Base Reactions