Mastering Solubility Equilibrium Calculations

Expert reviewed 22 November 2024 5 minute read


Introduction

Understanding solubility equilibrium calculations is fundamental in chemistry, particularly when dealing with precipitate formation and ionic solutions. This guide walks through common problem types you'll encounter in HSC Chemistry's Solution Equilibrium section.

Key Concepts

The solubility product constant (KspK_{sp}) is used to:

  • Calculate ion concentrations in saturated solutions
  • Predict precipitate formation
  • Determine solubility under various conditions

Example Problems and Solutions

1. Ion Concentrations in Saturated Solutions

Problem: Calculate the concentrations of Ba²⁺ and OH⁻ ions in a saturated Ba(OH)₂ solution at 25°C. Ksp=5.0×103K_{sp} = 5.0 \times 10^{-3}

Solution:

  • Write the dissociation equation: Ba(OH)2Ba2++2OH\text{Ba(OH)}_2 \rightleftarrows \text{Ba}^{2+} + 2\text{OH}^-

  • Let solubility = ss mol/L

    • [Ba2+]=s[\text{Ba}^{2+}] = s
    • [OH]=2s[\text{OH}^-] = 2s
  • Write KspK_{sp} expression: Ksp=[Ba2+][OH]2=s(2s)2=4s3K_{sp} = [\text{Ba}^{2+}][\text{OH}^-]^2 = s(2s)^2 = 4s^3

  • Solve for (s)(s): 5.0×103=4s35.0 \times 10^{-3} = 4s^3 s=0.108 mol L1s = 0.108\text{ mol L}^{-1}

Therefore:

  • [Ba2+]=0.108 mol L1[\text{Ba}^{2+}] = 0.108\text{ mol L}^{-1}
  • [OH]=0.216 mol L1[\text{OH}^-] = 0.216\text{ mol L}^{-1}

2. Precipitate Formation Prediction

Problem: Will a precipitate form when 250.0 mL of 0.150 mol L⁻¹ NaOH is mixed with 250.0 mL of 0.0800 mol L⁻¹ Ba(NO₃)₂?

Solution:

  • Calculate diluted concentrations:

    • [OH]=0.150 mol L1×250.0 mL500.0 mL=0.0750 mol L1[\text{OH}^-] = 0.150\text{ mol L}^{-1} \times \frac{250.0\text{ mL}}{500.0\text{ mL}} = 0.0750\text{ mol L}^{-1}
    • [Ba2+]=0.0800 mol L1×250.0 mL500.0 mL=0.0400 mol L1[\text{Ba}^{2+}] = 0.0800\text{ mol L}^{-1} \times \frac{250.0\text{ mL}}{500.0\text{ mL}} = 0.0400\text{ mol L}^{-1}
  • Calculate ion product (Q): Q=[Ba2+][OH]2=0.0400×(0.0750)2=2.25×104Q = [\text{Ba}^{2+}][\text{OH}^-]^2 = 0.0400 \times (0.0750)^2 = 2.25 \times 10^{-4}

  • Compare with KspK_{sp}: Since Q<KspQ < K_{sp} 2.25×104<5.0×1032.25 \times 10^{-4} < 5.0 \times 10^{-3}, no precipitate forms.

3. Solubility in Common Ion Solutions

Problem: Calculate BaSO₄ solubility in 200.0 mL of 1.00 mol L⁻¹ Na₂SO₄. Ksp of BaSO4=1.1×1010K_{sp} \text{ of BaSO}_4 = 1.1 \times 10^{-10}

Solution:

  • Write equilibrium equation: BaSO4Ba2++SO42\text{BaSO}_4 \rightleftarrows \text{Ba}^{2+} + \text{SO}_4^{2-}

  • Initial [SO42]=1.00 mol L1[\text{SO}_4^{2-}] = 1.00\text{ mol L}^{-1} (from Na₂SO₄)

  • Let solubility = ss mol/L Ksp=[Ba2+][SO42]K_{sp} = [\text{Ba}^{2+}][\text{SO}_4^{2-}] 1.1×1010=s(1.00)1.1 \times 10^{-10} = s(1.00)

  • Solve for ss: s=1.1×1010 mol L1s = 1.1 \times 10^{-10}\text{ mol L}^{-1}

Return to Module 5: Equilibrium and Acid Reactions